High - Dimensional Generalized Linear Models and the Lasso
نویسنده
چکیده
We consider high-dimensional generalized linear models with Lipschitz loss functions, and prove a nonasymptotic oracle inequality for the empirical risk minimizer with Lasso penalty. The penalty is based on the coefficients in the linear predictor, after normalization with the empirical norm. The examples include logistic regression, density estimation and classification with hinge loss. Least squares regression is also discussed.
منابع مشابه
Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications
The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including ...
متن کاملNon-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso.
We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملCommunication-efficient sparse regression: a one-shot approach
We devise a one-shot approach to distributed sparse regression in the high-dimensional setting. The key idea is to average " debiased " or " desparsified " lasso estimators. We show the approach converges at the same rate as the lasso as long as the dataset is not split across too many machines. We also extend the approach to generalized linear models.
متن کاملThe deterministic Lasso
We study high-dimensional generalized linear models and empirical risk minimization using the Lasso. An oracle inequality is presented, under a so called compatibility condition. Our aim is three fold: to proof a result announced in van de Geer (2007), to provide a simple proof with simple constants, and to separate the stochastic problem from the deterministic one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008